Bats Threatened by White Nose Syndrome

The Swamp Stomp


Volume 19, Issue 1

A fungal disease that has been called “the deadliest disease to hit wildlife in the United States in recorded history” is threatening fifteen species of bats living in North America.(1) The disease is called White Nose Syndrome (WNS), and bats are the only animals that appear to be affected by this pathogen. Six of these 15 affected bat species are now either threatened or endangered with the possibility of becoming extinct altogether.

The actual scientific name for White Nose Syndrome is Pseudogymnoascus destructans, or Pd for short. Pd can infect up to 90% of a bat hibernaculum, which is a place such as a cave, where the bats hibernate over the winter months.  Bats normally hibernate in colonies of hundreds of bats so the infection spreads quickly through a colony and with devastating results. Whole colonies of bats can succumb to the disease in a single winter.  Already, the fungus has killed almost six million bats in North America. 

Pd attacks the bare skin of the bat (primarily the wings and faces) and produces a white fuzz on the surface. Because of this attack to their skin, the bats will periodically and unnaturally awaken while hibernating.  During a normal hibernation period, bats do awaken from time to time and use some small portion of their stored fat. However, the unnatural activity of the disease causes the bat to use much more of the stored fat that is required to survive the hibernating period.  Bats literally die of starvation from the fungus.(1)

The fungus finds its way into the caves of bat hibernacula through many different avenues. Infected bats can leave the fungus behind on the surface of a cave as they travel from cave to cave.  Sometimes cavers, people who study or investigate caves, carry it on their clothing from one bat hibernaculum to the next, and then there are winds and other external sources that may also be factors that introduce the fungus to a cave. Once introduced to a new setting, the fungus attaches itself to the substrate of the cave walls waiting for an unsuspecting bat.

Pd was first discovered in North America in an area near Albany, New York in the year 2006.  No one knows how it reached our continent, but research into the fungus has traced its initial existence to Eurasia many years prior to 2006.  In Eurasia however, the fungus has been around long enough that the bats there have built an immunity to it.  After its initial discovery in our country in 2006, the pathogen has spread across the US into the Midwest and into some portions of Canada.

There is ongoing research into a “cure” for WNS.  Research into the genome of the fungus and others like it, has shown that Pd is missing an enzyme that turns off reparation of DNA after exposure to UV light. This is one avenue that is being pursued by researchers to help eradicate the fungus from hibernacula before the bats have a chance to settle into their cave for the winter months.

Researchers are also studying the habits of some of the hibernating bats that survive WNS.  They have found that Big Brown Bats have developed a strategy of a unified awakening of the whole colony on a nightly basis in response to the WNS and researchers hypothesize that the heat from surrounding bats helps store energy and hence, fat, making survival of the season an option.(1)

The latest research shows that there are bats that have been infected, survived, and then become pregnant. Their immunity will be passed on to their offspring and there will be more and more immunity as these bats survive into the next generation. Natural selection is working for this species of bats, but what about the others? The disease is still new and spreading in North America. It may take many more years before either the fungal pathogen is eradicated or controlled, or multiple native bat species are able to combat the disease through immunity.  Let’s hope that the bats can hold out until this pathogen is no longer a problem.

1. ”White Nose Syndrome. The mystery fungus killing our bats.” Wild Things Sanctuary.org. nd. <www.wildthingssanctuary.org/bats–white-nose-syndtomr.html>

New EPA Policy on Jurisdictional Waters

The Swamp Stomp


Volume 18, Issue 51

Last week, the US Environmental Protection Agency released a draft version of its new Waters of the US definition. During the signing ceremony there were a few statements which spoke to the spirit of the regulation, specifically, the wisdom of the farmers,developers, and the manufacturing industry to know what is best for the land. I am afraid history is against them on that point. Several of the presenters also made mention that a Waters of the US assessment is something that any landowner should be able to perform as a Do It Yourself (DIY) project, much like building a deck or installing a screen door. This would eliminate the need for environmental consultants, civil engineers, planners, surveyors, attorneys, and many civil service positions. Oh, and yes, wetland training companies like us.

This is obviously a concern as the Clean Water Act has spurred on thousands of jobs in the past 40 years centered around environmental protection and compliance. None of this was disclosed in the associated economic impact analysis other than what was done for this proposed regulation.

Before you fire up your resume and consider a career change there is a bit of good news. Wetlands are still regulated and the fact that they require the presence of wetland soils,vegetation and hydrology is just complicated enough to keep most DIYers out of the swamp. Plus, the new regulation is 253 pages long. A DIY screen door is usually 2 pages with lots of pictures.

There is a significant legal question that I plan on asking in the public comment process. It is a bit complicated, but it may prove to be a major flaw in the regulation. It has to do with the state assumption of the Waters of the US.

Under section 404(g), states can elect to assume the federal 404 program. Thus far, only New Jersey and Michigan have done so. I have had the benefit of living through New Jersey’s assumption process so I have a unique perspective and experience on how the assumption process works.

When the Clean Water Act was passed in1972, it was the intention of the writers that all wetlands and waterways would be jurisdictional. This was underscored in the writing of the 2015 Clean Water Rule. What was not mentioned in the 2015 Clean Water Rule was the fact that initially the US Army Corps of Engineers (Corps) had granted an exemption in the form of a general permit (#26) to allow the filling of up to 10 acres of head-water wetlands. These wetlands may or may not have a physical connection to a traditional navigable water way. The was to reduce the regulatory burden on both the Corps and the public. This was an extremely unpopular nationwide permit and it was later reduced to one acre of fill and then ultimately it was eliminated entirely. However, the point being is that these wetlands and waterways were regulated from the onset of the Clean Water Act.

The US Supreme Court chimed in through a series of cases that confirmed that adjacent wetlands are federally jurisdictional and that isolated wetlands are not. Then came the Rapanos case.The nine Justices could not come to a consensus on that case and the lower courts’ decisions were upheld. What is unfortunate is that the current regulations and the proposed regulations are both based upon individual Justices’ opinions. What is before us today represents two opposing sides. The Rapanos case was vacated, so why are using it to make decisions today? I guess it’s just pick your favorite Justice and go with what suits you. This is aside from my point but also an important issue.

The issue is that under this new regulation, the federal government will not regulate wetlands that do not pass the Scalia physical connection test. How then can the states assume these waters under section 404(g)? If they are not regulated by the federal government, there is nothing for the state to assume. The spirit of the EPA proposal is to pass these contentious wetland decisions over to the states. However, if they are non-jurisdictional then the federal government does not have the right to pass them to anyone. It’s not their land! This then becomes a taking issue and the state would only be able to regulate these wetland systems though a state-passed imminent domain process. That will be fun – not.

This is not what New Jersey and Michigan did. They assumed the wetlands (all of them) that were regulated by the federal government. There was a lot of talk about grandfathering when the state laws were passed and there were grandfather provisions due to the more restrictive state versus federal implementation of section 404. However, it was never an issue that the state had the right to regulate the wetlands that were formally regulated by the federal government. At the time, all wetlands were Waters of the US, so the state could assume all of the waters of the state in their entirety.

This new regulation eliminates many of the head-water wetlands that were considered federally jurisdictional. Since some of them only had a biological or chemical significant nexus to a Traditional Navigable Waterway and not a physical connection, they would no longer be considered federally jurisdictional. The idea put forward by the EPA that we should not worry, because the state will regulate these waters if they are important, is disingenuous. If the federal government cannot regulate them, the state would need to create some sort of nexus that would bring these under their control. Forty-eight states, the US Territories, and the Tribes do not have this legislation in place.

I need to make one last point that regards farming. When the Clean Water Act was passed there were farmland exemptions to the Act. This was meant to specify what could and could not be done to a wetland on a farm. This was generally a more relaxed standard than other non-farm activities. However, the wetlands were still regulated. This underscores the intent of the writers of the Clean Water Act to regulate all wetlands and waterways in the US.

The ultimate solution to this issue was described by Justice Alito in the Sacket case of 2012. “Real relief requires Congress to do what it should have done in the first place: provide a reasonably clear rule regarding the reach of the Clean Water Act.” Sackett v. Environmental Protection Agency (3/21/2012)

Remember, regulations are an agencies interpretation of a law. If they get it wrong, it is up to us to comment and correct them. You will have that opportunity as soon as the regulation is published in the Federal Register in the next few weeks. Your job may very much depend up where this ends up. Please read it and comment.

Part-Time Flexible Houston Area Wetland Delineator

1099 Contract work, must be able to get to the office or jobsites in the area. Must have own PC with ArcGIS pro.

Must have experience in field evaluations, plant identification &classifications / soil sampling / completing USACE data forms, experience with GPS survey of site efforts, and simple GIS overlays for report graphics. Must have completed delineation course and performed a sufficient number of Houston area evaluations to competently complete delineations of a site.

Most all field work and office work can be scheduled around other life activities is flexible.

Work is between 0 and about 15 hours a week. About 1/2 field and 1/2 office.

Pay would be $50 per hour of site and office work, then 1/2 rate for travel.

Good position for a student or stay at home parent that isn’t looking for a full-time position, but wants to make some good money and keep field/office skills sharpened.

Steve McElyea, MS PE 
President 
SMC Consulting, Inc. 
3418 Pickering Lane 
Pearland, Texas 77584

281-997-7911 office 
832-725-7085 cell 
steve@smcenvironmental.com

What is a Waters of the US in 2018?

The Swamp Stomp

Volume 18, Issue 50

In the last several months there have been a series of court rulings that have changed what constitutes a Waters of the US (WOTUS). Ironically, the reason for the change relates to the manner in which the change was announced. What makes it ironic, is that the judges who have ruled against the Trump Administration’s 2015 WOTUS Rule delay have have done so on the basis that the public needed more time to absorb and comment on the delay. These judges’ orders have had an immediate effect which seems a bit hypocritical given the reasons for the rulings.

When the Clean Water Rule was implemented in 2015, a partial and the then a nationwide stay of the Rule was ordered by the 6th District Court. Knowing that this three-year stay would be lifted this year, the Trump administration issued a regulation that imposed an additional 2-year postponement on the implementation of the 2015 Clean Water Rule. There was a brief public comment period and the delay became effective this past spring. Shortly thereafter the 6th Circuit stay was lifted.

This past August, a South Carolina Federal judge ruled that the Trump delay of the 2015 Clean Water Rule violated the Administrative Procedures Act (APA) and that the public should have had more time to comment on the delay rule. Please note that the Trump rule was simply a delay of the implementation of the published rule. Apparently, the public needed more time to absorb the impact of what an additional 2-year delay on a rule that already had been delayed for the previous 3 years would be. This seems a bit silly but as the South Carolina Federal Judge noted in his decision, “What is good for the goose is good for the gander.” This was in reference to all of the Obama era APA violations. It seems to be a possible political payback.

Shortly thereafter, District judges in Texas, Georgia and North Dakota have prohibited the South Carolina Judges’ rule from being applied in 28 states. The remaining 22 states are currently subject to the Obama era rules. The EPA has put together a pretty nice map of this as shown below.

About a week ago, a Washington State Federal judge reinstated the 2015 Obama era rules nationwide. However, this was in direct conflict with the previous Federal Judges’ prohibition on implementing the rules. It is a bit unclear if the rules are in effect nationwide. However, it seems that the previous Texas, Georgia and North Dakota judges’ decisions remain valid for now. So as shown on the EPA map, 28 green states are not subject to the 2015 rule and the 22 blue states are.

This week should prove interesting as the Trump administration has announced that it will be releasing its own Waters of the US definition. This would replace the 2015 Rules. It is expected that this would go into effect sometime before the summer of 2019. The Trump rules would follow the Scalia decision from the Rapanos Supreme Court decision of 2006. This would require jurisdictional aquatic resources to be physically connected to commerce waters. This is a divergence from the Kennedy decision of said same case that required a significance nexus that could also include chemical and biological connections to commerce waters. One can assume that the Scalia test would result in less areas being defined at the Federal level as jurisdictional aquatic resources as it only allows for a physical connection.

We will have more about this in upcoming newsletters and our annual Wetland Status and Trend Webinar in January.

Winter Delineation

Swamp Stomp

Volume 18, Issue 49

As I write this, a few states are already covered in snow. This makes any field work very difficult. Heck, driving to the office could be a challenge. Kind of makes that whole global warming thing sound pretty good right about now.

We can’t stop work and wait for spring though. We have to get some field work done! The problem is that we have to balance responsible science with paying the bills. We cannot just lay everyone off when there is snow on the ground.

I have worked in the northern part of the country for many a winter. As a result, I have developed some tips and tricks for conducting wetland delineations in less than ideal conditions. I thought I would share a few with you while you wait for the snow plows to show up.

The first and foremost important item is do not take pictures of the snow and send it to the Corps. You are going to have to wait until you can see bare ground. Most Corps Districts will not even accept the reports if there are snow covered pictures. You will need to let your clients know that there will be a follow–up site visit to finish up the field work when the snow melts.

Now, if the snow is many feet deep, you may still be stuck in the office. First, there is a safety issue and second, there is a matter of really being able to accomplish anything when the snow is that thick. The safety issue should not be overlooked. Under any circumstances, do not venture into the field alone. There are just too many hazards out there that a cell phone cannot help you with. Hypothermia is one of the bigger hazards you may face. Keep an eye on each other.

If you can navigate through the snow safely, you should be able to do a tree survey. The trees can be identified in the winter by twigs, bark, and buds. To be frank, this is a better way to identify them anyway. The leaves can be misleading. This is especially true with the red oaks. The buds are critical to a positive identification of these tricky trees.

Saplings and shrubs will also persist throughout the winter months. Many of these are either facultative wet (FACW) or facultative up (FACU). These can be a great help with wetland determinations.

The herbaceous species will most likely be absent. However, there are some species that persist in the non-growing season. These perennial species often die back to the root, but the vegetative parts remain. Cattails and soft rush are good examples of this. Species like skunk cabbage also die back to the bulb leaving a little leaf ball right below the ground surface in the subnivian zone. This is the space between the snow and ground surface.

If you do encounter herbaceous species in the winter, I would suggest limiting the inventory to only perennials. You may find remnants of annuals in the winter. However, the problem with annuals is that they are highly variable and may be responding to a seasonal or climatic change in the hydroperiod. This may not be typical for the site overall. So if you are able to identify them (to species), make a note and keep an eye on the site when the snow melts.

Hydrology is going to be a tough one. Most of the indicators will either be buried or otherwise be altered due to being frozen. However, there are a few to keep an eye out for.

Obviously, if you see standing water you have a positive indicator of hydrology. Be careful not to include a frozen puddle that may only be there temporarily. Since the evaporation rate is so low in the winter, that area could easily be a false positive. Look for type “C” soil indicators as a backup if you really want to call the puddle a potential wetland. Oxidized rhizospheres would be great to find.

Last, but not least, are the soil indicators. Believe it or not, most of these will persist in the non-growing season. Even the rhizospheres will remain when the soil is frozen.

If the soil is frozen solid, you may have more of a logistical issue extracting a sample than any other issue. There are special devices made to help you with this. The slide hammer attachment works well on a tube sampler, but be prepared to totally destroy the sampler by the time you are done. There are some other clever devices out there that may help you. A little research may be necessary. Your trusty shovel will also work in frozen soil. No need to go to the gym on that day though.

I would recommend that you take a picture of the soil in its frozen state and identify any hydric indicators. Then take the sample to your nice warm truck and see what you see when it thaws out. Note any change in soil color as it warms. My experience is that the frozen soil looks brighter in color and may give you a false negative until it melts.

The Corps may still have issues with any work done with snow cover. Please check with your local Corps field office to see if they have any restrictions. Even if they do, you still may be able to get a jump start on the site and be ready to finish it quickly in the spring. For those of you WAY up north I think that is sometime in July. You will have to hurry before that first Labor Day snow storm!

Have a great week. Stay warm and stay safe.

Marc

Hydric Soil Indicators

Swamp Stomp

Volume 18, Issue 48

The most common soil type we encounter in wetlands is the “F” group of hydric soils. These are the loamy mineral soils. The texture needs to be a fine sand or finer. Usually, we are looking at silts and clays.

Of all of the indicators in the “F” group, the two most common ones are the depleted matrix “F3” and the dark surface “F6.” It is not unusual to find both of these in the same soil pit. Both of these indicators are dependent upon soil color as their hydric condition test.

There are many variations of color associated with the “F” indicators. However, a basic rule of thumb is that they need to have a Munsell matrix chroma of 2 or less. There are provisions for chromas greater than 2 found in some of the other indicators. However, for the “F3” and “F6” we need to see colors that are at least as dark as a 2.

There is still some pushback from the old time delineators on these new indicators. For decades we used a single indicator for soil color.

  • Matrix chroma is 2 or less in mottled soils
  • Matrix chroma is 1 or less in unmottled soils

This has to occur at a depth of 10 inches or the bottom of the “A” horizon whichever is shallower.

This definition served us well but it is no longer in use. When we look at the new “F” indicators though, we see that the old definition is buried in them (sorry for the pun).

One other oldie is the concept of mottling. This term has been replaced with the concept of redoximorphic features. We now refer to dark features as redox depletions and bright features as redox concentrations. Mottling always meant a mix of soil colors. However, it usually was expressed when the dark features were in the matrix (dominant color) and the bright features were individual masses. The use of the redox concentrations and redox depletions is much more descriptive and a change for the better.

The thickness of the indicator feature is also a new concept. Many of the “F” indicators not only require a specific soil color, but also a thickness associated with it. For example, a matrix with a chroma of 2 must be at least 6 inches thick in order to count as a hydric soil feature. To make this a bit more challenging, some of these thickness requirements can be combined with other hydric soil indicators thickness requirements to make up any missing thickness goals. This only applies to certain indicators like the “F3” and “F6”.

The last caveat is that some of these features must occur within certain depth limits in order to count as a hydric soil feature. You must see the feature start at a specified depth and then extend for a certain thickness. One aspect of the “F3” requires that a depleted matrix must start in the upper 12 inches of the soil and extend for at least 6 inches. Thickness and depth are combined.

The “F3” indicator is one of the most frequently found indicators. It is referred to as a depleted matrix. There is a tricky part to this indicator regarding the use of the US Army Corps Regional Supplements. The definition of a depleted matrix is found in the glossary along with a nice graphic of what it means. The problem is that the hydric soils section leads you to believe that the full description of the feature is found within the hydric soil indicator description but it does not. You need to check the glossary!

The description starts with the idea that you have a depleted matrix, therefore, you need to know what a depleted matrix is. This involves an analysis of the soil color and the percentage of redox features.

A depleted matrix is:

The volume of a soil horizon or subhorizon from which iron has been removed or transformed by processes of reduction and translocation to create colors of low chroma and high value. A, E, and calcic horizons may have low chromas and high values and may, therefore, be mistaken for a depleted matrix. However, they are excluded from the concept of depleted matrix unless common or many, distinct or prominent redox concentrations as soft masses or pore linings are present. In some places the depleted matrix may change color upon exposure to air (reduced matrix); this phenomenon is included in the concept of the depleted matrix. The following combinations of value and chroma identify a depleted matrix:

  • Matrix value of 5 or more and chroma of 1, with or without redox concentrations occurring as soft masses and/or pore linings, or
  • Matrix value of 6 or more and chroma of 2 or 1, with or without redox concentrations occurring as soft masses and/or pore linings, or
  • Matrix value of 4 or 5 and chroma of 2, with 2 percent or more distinct or prominent redox concentrations occurring as soft masses and/or pore linings, or
  • Matrix value of 4 and chroma of 1, with 2 percent or more distinct or prominent redox concentrations occurring as soft masses and/or pore linings (USDA Natural Resources Conservation Service 2010).

Common (2 to less than 20 percent) to many (20 percent or more) redox concentrations (USDA Natural Resources Conservation Service 2002) are required in soils with matrix colors of 4/1, 4/2, and 5/2. Redox concentrations include iron and manganese masses and pore linings(Vepraskas 1992).

Once you figure that out you just need to look for depth and thickness of feature.

A layer with a depleted matrix that has 60 percent or more chroma of 2 or less and that has a minimum thickness of either:

  • 2 in. (5 cm) if the 2 in. (5 cm) is entirely within the upper 6 in. (15 cm) of the soil, or
  • 6 in. (15 cm) starting within 10 in. (25 cm) of the soil surface.

The “F6” indicator does not require a depleted matrix. It is a dark surface described as follows:

A layer that is at least 4 in. (10 cm) thick is entirely within the upper 12 in. (30 cm) of the mineral soil, and has a:

  • Matrix value of 3 or less and chroma of 1 or less and 2 percent or more distinct or prominent redox concentrations occurring as soft masses or pore linings, or
  • Matrix value of 3 or less and chroma of 2 or less and 5 percent or more distinct or prominent redox concentrations occurring as soft masses or pore linings.

I should add that distinct or prominent redox features are defined by the color contrast between these features. Please check the Regional Supplement glossary for a full description. We also printed it on our soil bandana.

These two soil indicators can also be combined to meet the thickness requirements of either feature. This may vary by Regional Supplement so make sure to check with the Corps for any local interpretations.

Have a great week!

– Marc

Red Tide

Swamp Stomp

Volume 18 Issue 46

Roll – Crimson Tide – Roll, may or may not be your favorite shout at College football games, but if you are a fisherman, sportsman, beachgoer or other visitors to coastal waters where the dreaded Red Tide occurs, it can certainly bring an unwanted experience.

Red tides occur worldwide in oceans, bays, intertidal zones, and are most commonly caused by the upwelling of nutrients from the sea floor caused by massive storms, though anthropogenic causes such as urban/agricultural runoff may also be a contributing factor. During these upwellings, certain species of phytoplankton and dinoflagellates can multiply rapidly. These organisms contain pigments that vary in color from brown to pink to red and discolor the water and hence the name Red Tide. In the gulf coast region of the United States, the most common species causing Red Tides is Karenia brevis, one of many different species of the genus Karenia found in the world’s oceans. The northeast coast of the United States experiences Red Tides caused by another species of dinoflagellate known as Alexandrium fundyense. The growth of these algal blooms depends on wind, temperature, nutrients, and salinity. Red Tides do not occur in freshwater ecosystems. The occurrence of Red Tides in some locations appears to be entirely natural and is a seasonal occurrence resulting from coastal upwelling and the movement of certain ocean currents.

Red tides are often associated with fish kills from the algal production of toxins such as brevotoxins and ichthyotoxins that are harmful to marine life. These toxins can build up in shellfish that are then eaten by other animals. Fish typically exhibit neurotoxin poisoning by swimming in irregular spasmodic motions followed by paralysis, difficulty breathing and death.

Brevetoxins are tasteless, odorless, and heat and acid stable. Thus, these toxins cannot be easily detected, nor can they be removed by food preparation procedures. Humans can be affected by the Red Tide by eating contaminated shellfish, breathing winds that have become aerosolized, and sometimes by skin contact. People who eat contaminated shellfish may suffer from severe gastrointestinal and neurologic symptoms including vomiting, nausea, slurred speech. tingling lips, fingers or toes. Swimming among brevetoxins or inhaling brevetoxins dispersed in the air may cause irritation of the eyes, nose, and throat, as well as coughing, wheezing, and shortness of breath. People with respiratory illnesses such as asthma may experience these symptoms more severely.

The best way to avoid an unpleasant experience with Red Tides is to monitor reports from health agencies and heed public warnings. You should try to reduce exposure by avoiding winds blowing onshore, reducing time outside, and certainly keeping off the beach. You should use your home air conditioner less and use high quality small particulate matter-capture air filters. If you are driving, keep the vehicle air circulating within the cabin and avoid importing outside air.

Red Tides have been recorded for centuries and are here to stay. Learn more about what you can do to help prevent Red Tides and otherwise assist ocean health by becoming involved with Coastal/Oceanographic Organizations in your area.

Source:

https://oceanservice.noaa.gov/facts/redtide.html, What is a red tide? August 6, 2018

https://www.cdc.gov/habs, Centers for Disease Control and Prevention, Harmful Algal Bloom (HAB)-Associated Illness, June 19, 2018

Illegal Tarantula Trade: Spookier than Halloween

Swamp Stomp

Volume 18 Issue 45

As fall sets in and we prepare for Halloween, we tend to appreciate the spookier side of life more than we might in the spring when fluffy rabbits and chicks tend to decorate homes. One spooky creature which is next to impossible not to see on decorations this time of year is the tarantula. Perhaps the spookiest aspect of this creature though, which is not well known, is the rampant and illegal trade in tarantulas. This global problem has haunted many ecologists as they try to stop what has already caused damage to ecosystems around the world.

Although you were probably unaware that the illegal tarantula trade existed as of several minutes ago, it is part of the multi-billion black market industry in illegal wildlife trading. Some of the more well-known animals that are a part of this illegal trade include elephants and rhinos, but tarantulas have also been hit especially hard. Conservation biologist Sergio Henriques points to increased travel and cracks in legislation as the main sources of fueling the trade of tarantulas. Wanted for their beautiful coloring, these tarantulas often end up killed and encased in resin on a shelf. Tarantulas in the genus Brachypelma have been especially hard hit by this illegal trading due to their characteristic flame-colored spots and red knees.

So, if the tarantula population were to significantly decrease, would they truly be missed? First of all, although they are rather scary to look at, and tarantulas do carry venom, you are actually more likely to be affected by a bee sting than a tarantula bite. Moreover, tarantula venom has actually been very useful to researchers. Their venom has been extensively studied and we now know much more about pain and diseases such as epilepsy. Tarantulas are also extremely useful in agriculture, as they eat the insects and other pests that infest important crops. Additionally, tarantulas help out other organisms in their ecosystems, as the silk they spin is often used by hummingbirds to build their nests.

Unfortunately, the illegal tarantula trade is hardly a priority for law enforcement officers. With the abundance of crime in the world, trading in tarantulas seems rather insignificant. Even among scientists, tarantulas are less of a priority than the majestic elephant for example.

There are over 900 species of tarantulas, but according to Henriques, the conservation status of only 15 of these have ever been assessed leaving the status of over 99 percent of tarantulas in the wild completely unknown. Scientists who study these creatures have serious concerns for many of the species involved in illegal trading. Since females reproduce later in life, it is much harder for a population to bounce back when so many of its members are removed so suddenly. While not in the top ten of favorite pets, tarantulas are important for many reasons, and without our help and that of dedicated scientists, they could one day be gone.

Source:

Actman, Jani. “The illegal market for tarantulas is hairy business.” National Geographic. National Geographic. October 31, 2018. Web. November 1, 2018.

Octopuses on Ecstasy Leads to Neurological Advances

Swamp Stomp

Volume 18 Issue 44

When you look at an octopus, it doesn’t appear to even remotely resemble a human. From its eight arms to its strange movements, it looks almost alien. In fact, though, it turns out that octopuses are very smart, social, and in many ways, not too different from humans. Gul Dolen, a neuroscientist at Johns Hopkins University School of Medicine, and Eric Edsinger, an octopus researcher at Marine Biological Laboratory in Woods Hole, discovered this in a rather unique study involving octopus behavior and the drug ecstasy.

Ecstasy, or 3,4-Methylenedioxymethamphetamine(MDMA), is found most often at parties. In humans, ecstasy causes a variety of reactions in the brain. Fear is reduced and empathy is induced, and the result is a feeling of overwhelming euphoria, often experienced at electronic dance music (EDM) festivals. When ecstasy enters the bloodstream, the molecules of the drug bind to a protein that regulates the flow of serotonin into and out of neurons. This causes a flood of serotonin, which is responsible for the change of behavior in humans. Interestingly, in octopuses, the drug reacts in the same way.

Hoping to discover more about how the brain controls social behaviors, Dr. Dolen dosed octopuses with ecstasy. Before the drug, the octopuses stayed mostly to themselves, ignoring the other octopuses in the tank and spending most of their time with a Star Wars figurine on the opposite end of the tank. But once the ecstasy was given, the octopuses let loose and enjoyed the company of their fellow octopuses. Some even displayed affection, hugging an overturned orchid pot that protected another octopus and showing off their mouths, another sign of affection.

A major takeaway from this experiment is that somehow, despite being separated by 500 million years of evolution, humans and octopuses share a portion of their brain chemistry. This may seem like a small accomplishment, but when our current conception of the brain is so small, this finding could result in huge advances. If we can understand more completely how the octopus brain functions, we may be able to more completely understand how the human brain functions. The list of neurological diseases is long, including Alzheimer’s and Parkinson’s among others, and most do not have any known cure. Perhaps octopuses on ecstasy could be the key to finding these cures.

Source:

Klein, JoAnna. “On Ecstasy Octopuses Reached out for a Hug.” New York Times. New York Times. September 20, 2018. Web. October 21, 2018.